Künstliche Intelligenz (KI) und Vorurteil

Mit Tools wie Midjourney lassen sich Texte in Bilder umwandeln. Die Ergebnisse sind beeindruckend detailliert und realitätsnah, allerdings nicht frei von Stereotypen. Hier setzt das von der Bayerischen Forschungsstiftung geförderte Projekt der THI-Professoren Torsten Schön und Matthias Uhl an: Die Forscher wollen der KI die Klischees abtrainieren.

Person am Laptop, die Beiträge zu KI recherchiert

Professor Torsten Schön lässt das Tool Midjourney Bilder erstellen (Foto: THI).

Fokus auf einen Laptop, auf dem ein Artikel zu KI dargestellt wird

Das Ergebnis ist nicht frei von Vorurteilen (Foto: THI).

Tippt man in das Text-to-Image-Tool Midjourney „Picture of a nurse“ ein, zu Deutsch „Bild einer Krankenpflegerin bzw. eines Krankenpflegers“ ein, ist das Ergebnis bemerkenswert: Die KI generiert ausschließlich Bilder von jungen Frauen mit langen Haaren, allesamt weiß und normschön. Damit reproduziert das Tool nicht nur Schablonen, es gelingt ihm auch nicht, gesellschaftliche Vielfalt abzubilden und den „male gaze“, den männlich-sexualisierten Blick, zu überwinden. Genau das wollen Professor Torsten Schön und Professor Matthias Uhl mit ihrem interdisziplinären Forschungsprojekt „EvenFAIr“ ändern. 

Der Computer Vision-Professor Schön und der KI-Ethiker Uhl haben sich zum Ziel gesetzt, Fairness- und Diversitätskriterien zu implementieren. „Immer mehr Menschen nutzen generative Modelle wie ChatGPT, DALL-E oder Midjourny“, erklärt Schön. „Diese Tools berücksichtigen aber keine Fairnesskriterien, sondern reproduzieren und verstärken zum Teil Vorurteile.“ Das sei bedenklich, da die erzeugten Bilder nachweislich Einfluss auf die Meinungsbildung der Nutzerinnen und Nutzer haben. „Zudem ist bei sicherheitskritischen Anwendungen eine ausführliche Abwägung von Fairnesskriterien notwendig, um keine Personengruppen zu benachteiligen. Es ist fatal, wenn dunkelhäutige Menschen im Straßenverkehr von KI-Algorithmen schlechter erkannt werden und damit ein höheres Risiko haben, von autonomen Fahrzeugen übersehen zu werden.“

Daher sei es von enormer Wichtigkeit, eine Methodik zu entwickeln, um Fairness in KI-Modellen messbar zu machen und bereits während der Entwicklung in den Trainingsprozess eingreifen zu können. Das Ziel des Forschungsvorhabens von Schön und Uhl, das in Kooperation mit e:fs konzipiert wurde, ist es, Möglichkeiten zu finden, um generative KI-Modelle standardisiert auf Fairnesskriterien zu überprüfen und ein Toolset zu haben, das diese Kriterien im Trainingsprozess etabliert, um faire generative KI-Modell zu gewährleisten: kurz eine KI ohne Vorurteile.